Foto de Claudinei S.
Claudinei há 10 anos
Enviada pelo
Site

Probabilidade

Pessoal

25) Suponha que x + y bolas, das quais x são vermelhas e y são azuis, sejam arranjadas em uma sequência linear de forma que todas as (x+y)! sequencias possíveis sejam igualmente prováveis. Se gravarmos o resultado deste experimento listado apenas as cores de bolas sucessivas, cada uma das sequências de cores possíveis tem a seguinte probabilidade de ocorrer ?

a) 1/2
b) 1/4
c) 1/3
d) 1/6

 Mais acredito que você passou a resposta correta, pois o resultado é 1/6 no gabarito.

Estatística Probabilidade
1 resposta
Professor André C.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 10 anos
Contatar André Da Silva
Boa noite Claudinei. Este é mais elaborado, mas acho que está errado, pois a probabilidade depende dos valores x e y. Ela só terá valor "exato" quando x e y forem determinados. Vamos compreender ele primeiro para que eu te explique o porquê a probabilidade será apenas um valor se x e y também forem numéricos. Primeiro o exercício diz que todos as possíveis sequências (x+y)! são equiprováveis. Até aqui nada de tão especial, a "única" informação é que se temos (x+y) espaços, então temos (x+y)! formas de preencher estes espaços com (x+y) objetos. Certo? Note que qualquer possível resultado de uma determinada sequência tem x!y! formas de ser configurado, ou seja, como está sendo listada as cores das bolas, então, ao final da listagem teremos x bolas vermelhas e y bolas azuis. Correto? Este resultado (x bolas vermelhas e y bolas azuis) tem x!y! maneiras de acontecer. Por exemplo, considere que as x primeiras são vermelhas e as y últimas azuis, então temos uma sequência com x bolas vermelhas e y bolas azuis. O desenho desta sequência é da seguinte forma x . (x-1) .(x-2). ... .3.2 . 1 . y . (y-1) . (y-2). ... . 3.2.1 = x!y! Compreendido estas duas coisas então temos que cada sequência, s, tem probabilidade igual a P(X=s) = x!y! / (x+y)! Esta é a probabilidade procurada! Vou mostrar para você que ela depende dos valores de x e y. Vejamos alguns exemplos Exemplo 1: Caso mais simples: 1 vermelha e 1 azul Chamaremos bola vermelha de V e bola azul de A Sequência observada: V A De quantas formas podemos observar 1 bola vermelha e 1 bola azul em sequência? Apenas 1. 1ª V; 2ª A Quantas são as sequências possíveis? Duas => V A ou A V Portanto a probabilidade da sequência é 1!1!/2! = 1/2. Exemplo 2: 2 vermelhas e 1 azul. Note que como temos mais do que 1 bola vermelha vamos nomear como V1 e V2. Sequência observada (listada): V1 A V2. Note que o que importa é a sequência! De quantas formas temos V A V em sequência? 2 formas, listarei-as: V1 A V2 ou V2 A V1. (=2!1!) Quantas são as sequências possíveis? 6 sequências, listando-as: V1 V2 A; V2 V1 A; V1 A V2; V2 A V1; A V1 V2 e A V2 V1. Portanto a probabilidade da sequência é 2!1!/3! = 2/6 = 1/3. Exemplo 3: 2 bolas de cada cor, ou seja, V1 V2 e A1 A2. Sequência observada: A2 V1 V2 A1 A sequência é 1 azul, 2 vermelhas e 1 azul. De quantas maneiras podemos formá-la? 4 possíveis (2!2!) => A2 V1 V2 A1; A1 V1 V2 A2; A2 V2 V1 A1; A1 V2 V1 A2. Quantas maneiras possíveis? 24 = 4! Portanto a probabilidade da sequência é 2!2!/4! = 4/24 = 1/6. Exemplo 4 (e último): Vamos considerar 5 vermelhas e 3 azuis. V1 V2 V3 V4 V5 A1 A2 A3. Sequência observada: V1 V2 V3 V4 V5 A1 A2 A3. Portanto a sequência é 5 vermelhas e 3 azuis. De quantas formas conseguimos esta sequência? 5.4.3.2.1.3.2.1 = 5!3! Quantas são as sequências possíveis? 8! Portanto a probabilidade da sequência é 5!3!/8! = 1/56. Note que além da probabilidade depender de x e y, ela diminui quando aumentamos o número de bolas. Observações: Não sei de onde tirou o exercício, mas nenhuma das respostas está correta, pois depende do valor de x e y. Em nossos exemplos, temos três delas: 1/2, 1/3 e 1/6. Tem algo similar a isso no livro de probabilidade do SHELDON ROSS sobre espaços equiprováveis, mas no livro é dado apenas um exemplo para compreensão, mas o resultado teórico é o que salientei, ou seja, P(X=s) = x!y! / (x+y)! Espero ter ajudado, bons estudos.

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Tutoria com IA
Converse com a Minerva IA e aprenda, tire dúvidas e resolva exercícios
Minerva IA
do Profes
Respostas na hora
100% no WhatsApp
Envie suas dúvidas pelo App. Baixe agora
Prefere professores para aulas particulares ou resolução de atividades?
Aulas particulares
Encontre um professor para combinar e agendar aulas particulares Buscar professor
Tarefas
Envie sua atividade, anexe os arquivos e receba ofertas dos professores Enviar tarefa