Foto de Jefferson S.
Jefferson há 7 anos
Enviada pelo
Site

Cefet-pi

Com relação aos conjuntos A e B e seus complementares A^c e B^c, é correto afirmar:
A) (A U B)^c = A^c U B^c
B) (A intersecção B)^c = A^c intersecção B^c
C) (A U B)^c = A^c intersecçãoB^c
D) (A intersecção B)^c = A^c U ^c
E) A - B = B  intersecção A^c

Matemática Ensino Fundamental
1 resposta
Professor Ewerton L.
Respondeu há 7 anos
Contatar Ewerton
Olá Jefferson. Boa noite. Para mostrar que uma afirmação é verdadeira devemos prová-la, ou demonstrá-la, e para mostrar que uma afirmação é falsa devemos apresentar um contra-exemplo, ou seja, dar um exemplo onde tal afirmação não é verdadeira. Vamos analisar cada item acima. (A) Falsa. Considere N (números naturais) como o conjunto universo, A={1} e B={2}. Temos A U B = {1,2} e assim (A U B)^c = {3,4,5,...}. Temos também A^c = {2,3,4,...} e B^c={1,3,4,5,...} e, desse modo, A^c U B^c = {1,2,3,4,5,..} = N. Logo (A U B)^c = A^c U B^c é falsa. (B) Falsa. Vamos considerar os conjuntos dados no item (A). Assim, A interseção B = vazio e desse modo, (A intersecção B)^c = N. Temos também A^c interseção B^c = {3,4,5,6,...}, ou seja, (A intersecção B)^c não é igual a A^c intersecção B^c. (C) Verdadeira. Considere x pertencente a (A U B)^c. Sendo assim, x não pertence a A U B e, como consequência disso, x não pertence a A e x não pertence a B. Desse modo, x pertence a A^c e x pertence B^c, o que implica em x pertencer A^c intersecção B^c. Logo (A U B)^c está contido em A^c intersecção B^c. Considere agora x pertencente a A^c intersecção B^c. Assim, x pertence a A^c e x pertence a B^c. Consequentemente, x não pertence a A e x não pertence a B, o que implica em x não pertencer a A U B. Logo x pertence a (A U B)^c. Portanto A^c intersecção B^c está contido em (A U B)^c. Concluímos então que (A U B)^c = A^c intersecção B^c. (D) Verdadeiro. Seja x pertencente a (A intersecção B)^c, desse modo, x não pertence a A intersecção B. Sendo assim x não pertence a A ou x não pertence a B, o que implica que x pertence a A^c ou x pertence a B^c, isto é, x pertence a A^c U B^c. Logo (A intersecção B)^c está contido em A^c U B^c. Considere agora x pertencente a A^c U B^c. Assim, ou x pertence a A^c ou x pertence a B^c. Desse modo, x não pertence a A ou x não pertence a B, o que implica que x não pertence a A interseção B, logo x pertence a (A intersecção B)^c e, portanto, A^c U B^c está contido em (A intersecção B)^c. Concluímos então que (A intersecção B)^c = A^c U B^c. (E) Falsa. Seja N o conjunto universo, A = {1,2} e B={2}. Desse modo temos A - B = {1}. Temos também A^c =[3,4,5,...] e, com isso, B interseção A^c = vazio. Portanto A - B não é igual a B intersecção A^c . Espero ter ajudado. Se tiver mais dúvidas podemos marcar uma aula. Até mais.

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta

Envie sua pergunta

Aprenda do seu jeito, no seu ritmo

Minerva IA
do Profes
Respostas na hora
100% no WhatsApp
Envie suas dúvidas pelo App
Escaneie o QR Code para baixar