
TERMODINÂMICA--EXERCÍCIOS

em 26 de Outubro de 2023
Uma equação de segundo grau é toda a equação na forma ax2 + bx + c = 0, com a, b e c números reais e a ≠ 0. Para resolver uma equação deste tipo, pode-se utilizar diferentes métodos.
Aproveite as resoluções comentadas dos exercícios abaixo para tirar todas as suas dúvidas. Não deixe também de testar seus conhecimentos com as questões resolvidas de concursos.
Exercícios Comentados
A idade da minha mãe multiplicada pela minha idade é igual a 525. Se quando eu nasci minha mãe tinha 20 anos, quantos anos eu tenho?
Solução
Considerando a minha idade igual a x, podemos então considerar que a idade da minha mãe é igual a x + 20. Como sabemos o valor do produto das nossas idades, então:
x . (x + 20) = 525
Aplicando a propriedades distributiva da multiplicação:
x2 + 20 x - 525 = 0
Chegamos então em uma equação do 2º grau completa, com a = 1, b = 20 e c = - 525.
Para calcular as raízes da equação, ou seja, os valores de x em que a equação é igual a zero, vamos usar a fórmula de Bhaskara.
Primeiro, devemos calcular o valor do ∆:
Para calcular as raízes, usamos:
Substituindo os valores na fórmula acima, iremos encontrar as raízes da equação, assim:
Como a minha idade não pode ser negativa, desprezamos o valor -35. Assim, o resultado é 15 anos.
Uma praça, representada da figura abaixo, apresenta um formato retangular e sua área é igual a 1 350 m2. Sabendo que sua largura corresponde a 3/2 da sua altura, determine as dimensões da praça.
Solução
Considerando que sua altura é igual a x, a largura será então igual a 3/2x. A área de um retângulo é calculada multiplicando-se sua base pelo valor da altura. Neste caso, temos:
Chegamos a uma equação incompleta do 2º grau, com a = 3/2, b = 0 e c = - 1350, podemos calcular esse tipo de equação, isolando o x e calculando o valor da raiz quadrada.
Como o valor do x representa a medida da altura, iremos desconsiderar o - 30. Assim, a altura do retângulo é igual a 30 m. Para calcular a largura, vamos multiplicar esse valor por 3/2:
Portanto, a largura da praça é igual a 45 m e sua altura é igual a 30 m.
Para que x = 1 seja raiz da equação 2ax2 + (2a2 - a - 4) x - (2 + a2) = 0, os valores de a deverão ser:
a) 3 e 2
b) - 1 e 1
c) 2 e - 3
d) 0 e 2
e) - 3 e - 2
Solução
Para encontrar o valor do a, primeiro vamos substituir o x por 1. Desta forma, a equação ficará assim:
2.a.12 + (2a2 - a - 4) . 1 - 2 - a2 = 0
2a + 2a2 - a - 4 - 2 - a2 = 0
a2 + a - 6 = 0
Agora, devemos calcular a raiz da equação completa da 2º grau, para isso vamos usar a fórmula de Bhaskara.
Portanto, a alternativa correta é a letra c.
Questões de Concursos
1) Epcar - 2017
Considere, em ℝ, a equação (m+2) x2 - 2mx + (m - 1) = 0 na variável x, em que m é um número real diferente de - 2.
Analise as afirmativas abaixo e classifique-as em V (VERDADEIRA) ou F (FALSA).
( ) Para todo m > 2 a equação possui conjunto solução vazio.
( ) Existem dois valores reais de m para que a equação admita raízes iguais.
( ) Na equação, se ∆ >0 , então m só poderá assumir valores positivos.
A sequência correta é
a) V – V – V
b) F – V – F
c) F – F – V
d) V – F – F