Enviada pelo
Site

Calcular a distância do ponto A(3,4,-2) em relação ao :

plano xy

plano xz

plano yz

eixo dos x

eixo dos y

eixo dos z

Cálculo Geral
2 respostas
Minerva IA
Inteligência Artificial do Profes
Respondeu há 7 meses

Para calcular a distância de um ponto ao plano ou eixo, siga os seguintes passos:

  1. Distância até o plano xy:
  2. O plano xy é definido por z = 0, portanto, a distância é a coordenada z do ponto.
    Distância ao plano xy=|z|=|2|=2

  3. Distância até o plano xz:

  4. O plano xz é definido por y = 0, portanto, a distância é a coordenada y do ponto.
    Distância ao plano xz=|y|=|4|=4

  5. Distância até o plano yz:

  6. O plano yz é definido por x = 0, portanto, a distância é a coordenada x do ponto.
    Distância ao plano yz=|x|=|3|=3

  7. Distância até o eixo dos x (eixo x):

  8. O eixo x é definido por y = 0 e z = 0. Use o teorema de Pitágoras considerando as coordenadas y e z.
    Distância ao eixo dos x=y2+z2=42+(2)2=16+4=20=25

  9. Distância até o eixo dos y (eixo y):

  10. O eixo y é definido por x = 0 e z = 0. Use o teorema de Pitágoras considerando as coordenadas x e z.
    Distância ao eixo dos y=x2+z2=32+(2)2=9+4=13

  11. Distância até o eixo dos z (eixo z):

  12. O eixo z é definido por x = 0 e y = 0. Use o teorema de Pitágoras considerando as coordenadas x e y.
    Distância ao eixo dos z=x2+y2=32+42=9+16=25=5

Assim, as distâncias são 2, 4, 3, 25, 13 e 5, respectivamente.

Já tem uma conta? Entrar
Ao me cadastrar, confirmo que li e concordo com os Termos de Uso .
Tutoria com IA
Converse com a Minerva IA e aprenda, tire dúvidas e resolva exercícios
Professor Gabriel N.
Respondeu há 8 anos
Contatar Gabriel


Claudia,
A distância entre esse ponto a cada um dos planos que você citou, vai ser a coordenada referente ao eixo que não faz parte do plano. Lembre-se de que a distância de um objeto a outro é sempre a menor distância possível, neste caso, a distância deve ser perpendicular.
Então, para o plano xy, a distância é na direção do eixo z e é o módulo/tamanho da coordenada do ponto no eixo z: 2 unidades
para o plano xz, a distância é na direção do eixo y e é o módulo/tamanho da coordenada do ponto no eixo y: 4 unidades
para o plano yz, a distância é na direção do eixo x e é o módulo/tamanho da coordenada do ponto no eixo x: 3 unidades
Agora, em relação aos eixos, pense em triângulos retângulos e na relação de Pitágoras da hipotenusa e os catetos.
A distância em relação ao eixo vai ser a raiz quadrada do quadrado das outras duas coordenadas.
para o eixo x:
d= raiz ( 4² + (-2)² )= raiz (20) = 2 raiz(5)
para o eixo y:
d = raiz (3²+(-2)²) = raiz(13)
para o eixo z:
d= raiz (3²+4²) = 5

EXEMPLOS ILUSTRADOS:
distância ao plano xy
http://i.imgur.com/SNA4QJW.png  
distância ao eixo x
http://i.imgur.com/XNgfmKo.png 

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Minerva IA
do Profes
Respostas na hora
100% no WhatsApp
Envie suas dúvidas pelo App. Baixe agora
Prefere professores para aulas particulares ou resolução de atividades?
Aulas particulares
Encontre um professor para combinar e agendar aulas particulares Buscar professor
Tarefas
Envie sua atividade, anexe os arquivos e receba ofertas dos professores Enviar tarefa