Foto de Juliana C.
Juliana há 10 meses
Enviada pelo
Site

Um projeto de investimento está sendo avaliado quanto a sua

Um projeto de investimento está sendo avaliado quanto a sua viabilidade. Uma simulação forneceu 81 valores para a taxa interna de retorno do projeto. Acredita-se que os valores da taxa interna de retorno se distribuam normalmente. Os valores obtidos revelaram uma média atraente, mas a variabilidade dada por s=5 (desvio padrão amostral) preocupa o investidor, devido ao risco que transfere para o retorno do projeto. Determine o valor inferior do intervalo de confiança de 90% para a variância da taxa interna de retorno do projeto. Registre o seu resultado NUMÉRICO no campo abaixo, usando QUATRO casas decimais (NÃO coloque ponto no seu resultado, nem letras, apenas virgula)
Professor Elinaldo V.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 10 meses
Contatar Elinaldo

Para encontrar o valor inferior do intervalo de confiança de 90% para a variância da taxa interna de retorno (TIR) do projeto, precisamos usar a distribuição qui-quadrado.

Dado que temos 81 observações e o desvio padrão amostral s=5s = 5, podemos calcular o intervalo de confiança para a variância usando a fórmula:

((n?1)?s2??/2,n?12,(n?1)?s2?1??/2,n?12)\left( \frac{(n-1) \cdot s^2}{\chi^2_{\alpha/2, n-1}}, \frac{(n-1) \cdot s^2}{\chi^2_{1-\alpha/2, n-1}} \right)

onde nn é o número de observações, s2s^2 é a variância amostral e ??/2,n?12\chi^2_{\alpha/2, n-1} e ?1??/2,n?12\chi^2_{1-\alpha/2, n-1} são os quantis da distribuição qui-quadrado com n?1n-1 graus de liberdade.

Para um intervalo de confiança de 90%, ?=0.1\alpha = 0.1. Portanto, ?/2=0.05\alpha/2 = 0.05.

Primeiro, encontramos os quantis da qui-quadrado:

  • ?0.05,802\chi^2_{0.05, 80} e ?0.95,802\chi^2_{0.95, 80}.

Usando uma tabela de qui-quadrado ou um software apropriado, encontramos:

  • ?0.05,802=101.879\chi^2_{0.05, 80} = 101.879
  • ?0.95,802=63.167\chi^2_{0.95, 80} = 63.167

Agora, calculamos o intervalo de confiança para a variância: (80?52101.879,80?5263.167)\left( \frac{80 \cdot 5^2}{101.879}, \frac{80 \cdot 5^2}{63.167} \right)

Calculando cada extremidade: 80?25101.879?19.609\frac{80 \cdot 25}{101.879} \approx 19.609 80?2563.167?31.696\frac{80 \cdot 25}{63.167} \approx 31.696

Portanto, o valor inferior do intervalo de confiança de 90% para a variância da TIR do projeto é aproximadamente 19.60919.609.

Registrando o resultado NUMÉRICO com quatro casas decimais: 1961

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Tire dúvidas com IA
Resposta na hora da Minerva IA
Enviar dúvida
Minerva IA
do Profes
Respostas na hora
100% no WhatsApp
Envie suas dúvidas pelo App. Baixe agora
Prefere professores para aulas particulares ou resolução de atividades?
Aulas particulares
Encontre um professor para combinar e agendar aulas particulares Buscar professor
Tarefas
Envie sua atividade, anexe os arquivos e receba ofertas dos professores Enviar tarefa