Foto de Areobaldo R.
Areobaldo há 2 anos
Enviada pelo
Site

As raizes da equação x^2-4x+4=0

AS RAIZES DA EQUAÇÃO X^2-4X+4=0

Matemática
10 respostas
Professor Luiz S.
Respondeu há 2 anos
Contatar Luiz Mariel
Vamos usar a fatoração: x² - 4x + 4 = 0 (x - 2)² = 0 x = 2

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Tutoria com IA
Converse com a Minerva IA e aprenda, tire dúvidas e resolva exercícios
Professor Angelo F.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 2 anos
Contatar Angelo

Bom dia Aerobaldo. Vamos lá:

As raizes da equação x2-4x+4=0.

Vamos calcular o discriminante primeiro: ? = b2 - 4ac = (-4)2 - 4*1*4 = 0 (Zero). Logo, teremos apenas 1 raiz real.

Logo, pela formula de Basra, x = -b / 2a = -(-4) / 2*1 = 2. Eis a resposta.

Sucesso!!!!!!

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Antonio R.
Respondeu há 2 anos
Contatar Antonio

Para encontrar as raízes da equação quadrática \(x^2 - 4x + 4 = 0\), podemos usar o método de fatoração ou a fórmula quadrática. Vou mostrar ambos os métodos:

**Método de Fatoração:**

Primeiro, observe que a equação já está em sua forma fatorada, pois ela pode ser reescrita como \((x - 2)^2 = 0\). Portanto, a equação tem uma raiz dupla em \(x = 2\). Neste caso, a multiplicidade da raiz é 2.

**Método da Fórmula Quadrática:**

A fórmula quadrática é dada por:

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]

Onde, na equação \(ax^2 + bx + c = 0\):
- \(a\) é o coeficiente do termo quadrático,
- \(b\) é o coeficiente do termo linear, e
- \(c\) é o termo independente (constante).

Para a nossa equação \(x^2 - 4x + 4 = 0\), temos:
\(a = 1\), \(b = -4\) e \(c = 4\).

Substituindo esses valores na fórmula quadrática:

\[x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1}\]
\[x = \frac{4 \pm \sqrt{16 - 16}}{2}\]
\[x = \frac{4 \pm \sqrt{0}}{2}\]

A raiz da parte dentro da raiz quadrada é 0, o que significa que não há raízes reais distintas, apenas uma raiz real de multiplicidade 2. Portanto, a solução é:

\[x = \frac{4}{2} = 2\]

Essa é a mesma raiz que encontramos pelo método de fatoração. Portanto, a equação \(x^2 - 4x + 4 = 0\) tem uma raiz real dupla em \(x = 2\).

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Ruan T.
Respondeu há 2 anos
Contatar Ruan

Pra resolver essa equação do segundo grau, vamos utilizar a fórmula de Bháskara.

Lembrando que para uma equação no formato , a fórmula de Bháskara se dá como:

No caso da nossa questão, os valores dos parâmetros , e são:

(Termo que acompanha o )

(Termo que acompanh o )

(Termo independente)

Vamos começar, calculando o (delta): 

Agora vamos aplicar esse resultado na segunda parte da fórmula:

Nesse caso, nossa equação tem apenas uma raiz (isso sempre vai acontecer quando for igual a ). E essa raiz é igual a .

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Flavio U.
Respondeu há 2 anos
Contatar Flavio

Podemos usar a por Bhaskara ou por um simples metodo de fatoração. Sabemos que vai ser fatorado em (X - ) * (X- ).

Também sabemos que a soma das raízes será -4, e seu produto sera +4

então, a fatoração fica (X - 2) * (X-2). O qual indica uma raíz unica sendo X = 2

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Matheus L.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 2 anos
Contatar Matheus
PARA COEFICIENTES INTEIROS E DE VALOR BAIXO, PEGA A VISÃO: X² -produto.X + Soma = 0 SEMPRE! SUA EQUAÇÃO: X² - 4x + 4 = 0 - produto = -4 --> produto = 4 + soma = 4 --> soma = 4 PERGUNTA: Que números se eu somar o resultado é 4 e se eu multiplicar o resultado também é 4? SIIIIIIM!!!! Essa equação tem duas raízes de mesmo valor... DOIS X1 = 2 e X2 = 2

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Diego S.
Respondeu há 2 anos
Contatar Diego
Considerando uma equação da forma ax²+bx+c temos que as raízes x1 e x2 satisfazem o seguinte x1+x2=-b/a x1•x2=c/a No caso da questão a=1,b=-4, c=4, daí x1+x2=4 x1•x2=4, então x1=x2=2.

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Ícaro L.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 1 ano
Contatar Ícaro

a=1, b=-4 e c=4

Vamos resolver por soma e produto:

Soma=x'+x"=-b/a=4/1=4

Produto=x'*x"=c/a=4

x=x'=x"=2

X=2 (Resposta)

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Lucas R.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 1 ano
Contatar Lucas

Fazendo Bhaskara o Delta = 0 (teremos apenas uma raiz)

Substituindo o Delta na equação de x teremos x = [-(-4) + 0] / 2(1) ... x = +4 / 2 ... x = 2

A única raiz é 2

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Professor Marco S.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 1 ano
Contatar Marco Antonio

aplicando báscara encontramos uma única raiz de valor 2. 

Um professor já respondeu

Envie você também uma dúvida grátis
Ver resposta
Minerva IA
do Profes
Respostas na hora
100% no WhatsApp
Envie suas dúvidas pelo App. Baixe agora
Prefere professores para aulas particulares ou resolução de atividades?
Aulas particulares
Encontre um professor para combinar e agendar aulas particulares Buscar professor
Tarefas
Envie sua atividade, anexe os arquivos e receba ofertas dos professores Enviar tarefa