Considere verdadeiras as premissas abaixo: (1) Se x ∈ C, então q(x) é verdadeira. (2) Se p(x) é verdadeira, então q(x) é verdadeira (3) Se x ∈ C, então x ∈ A. (4) Se x ∈ B, então p(x) é verdadeira. (5) Se x ∈ A, então x ∈ B ou x ∈ C. Denote as proposições das sentenças anteriores da seguinte forma: p: p(x) é verdadeira q: q(x) é verdadeira a: x ∈ A b: x ∈ B c: x ∈ C (a) Escreva as cinco premissas dadas ((1) a (5)) utilizando as letras atribuídas acima a cada sentença (a, b, c, p e q)e os símbolos da lógica (⇒, ⇔, ∧ ou "e", ∨ ou "ou") (b) Se q(x) é falsa, baseado nas premissas dadas, é verdadeiro ou falso que x ∈ A? Justifique a resposta com base nas premissas dadas. Você pode utilizar a notação definida para cada proposição para encurtar sua solução. (c) Se p(x) é verdadeira, baseado nas premissas dadas, pode-se afirmar que x ∈ B ? Justifique a resposta com base nas premissas dadas. Você pode utilizar a notação definida para cada proposição para encurtar sua solução.