O maior e menor valor da função f: R > R definida por f(x) = 3/(5-3senx), são, respectivamente:
A) 3/2 e 3/8.
B) 1 e -1.
C) 3/5 e 3/8.
D) 0 e 1.
Olá Liliane! Primeiramente, note que a imagem da função , isto é, o conjunto de valores possíveis que ela pode assumir é o intervalo
. Note também que
é uma função crescente de
, pois quanto maior
menor o denomidor de
e maior
. Portanto, os valores mínimo e máximo de
são respectivamente
e
, logo a alternativa correta é a
.
Espero ter ajudado! E bons estudos!
Lembre-se que a função seno pode ter como valores máximo e mínimo 1 e -1, respectivamente.
Assim, vamos pensar, primeiro, para o valor máximo:
f(x) = 3/[5-3(1)]
f(x)= 3/2
f(x)= 3/2
Agora, pensando no valor mínimo, temos:
f(x) = 3/[5-3(-1)]
f(x) = 3/[5+3]
f(x)= 3/8
Resposta: alternativa C