Qual a área de um triângulo isóceles cuja base mede raiz de 3 menos 1 e o ângulo do vértice mede 30º? https://drive.google.com/open?id=1Q1Bydy-sHegd708vwyyVms92nHMGGzKW
Área do triângulo isósceles é dado por A = 1/2 b.h. Ainda, temos que TAN (Â) = cat. adjacente/cat. oposto como TAN (15º) = h / [(sqtr 3) - 1], então h = (sqtr 3 + 1) / 2. Retornando ao cálculo da área do triângulo isósceles, temos que:
A = {[(sqtr 3) - 1] . [(sqtr 3) + 1)/2}, então A = 1 (u. a)²
P.S.: sqtr é o símbolo da raíz quadrada.
Bom dia, Robert!
Se o triângulo é isósceles e ângulo do vértice mede 30º então os outros ângulos medem º cada.
Traçando a altura em relação ao lado da base dado, teremos um triângulo retângulo com catetos e , e ângulo 75º.
Assim, . Portanto, .
Logo, a área do triângulo será .