Marcira Boa noite!
Inicialmente vamos passar o complexo Z = 32 para a forma trigonométrica: Z = ρ(cosθ + isenθ), onde ρ = √(32)2 + 02) ==> ρ = 32
cosθ = 32/32 ==> cosθ =1 e senθ = 0/32 ==> senθ = 0, logo θ = 0 (radianos) e Z =32(cos0 + isen0)
Aplicando a 2a Fórmula de Moivre (n√Z = n√ρ[cos(θ + 2Kπ)/5 + isen(θ + 2Kπ)/5]) onde K∈{0, 1, 2, 3, 4}
Para K = 0 ==> 5√Z = 5√32 [ cos(0 + 2.0.π)/5 + i.sen(0 + 2.0.π)/5 ==> 5√Z = 5√32 [ cos(0 + 0)/5 + i.sen(0 + 0)/5] ==> 5√Z = 2.[cos0 + i.sen0]==> 5√Z = 2
Para K = 1 ==> 5√Z = 5√32 [ cos(0 + 2.1.π)/5 + i.sen(0 + 2.1.π)/5] ==> 5√Z = 2.[cos(0 + 2π)/5 + i.sen(0 + 2π)/5 ==> 5√Z = 2.[cos(2π/5) + i.sen(2π/5)]
Para K = 2 ==> 5√Z = 5√32 [ cos(0 + 2.2.π)/5 + i.sen(0 + 2.2.π)/5] ==> 5√Z = 2.[cos(0 + 4π)/5 + i.sen(0 + 4π)/5 ==> 5√Z = 2.[cos(4π/5) + i.sen(4π/5)]
Para K = 3 ==> 5√Z = 5√32 [ cos(0 + 2.3.π)/5+ i.sen(0 + 2.3.π)/5] ==> 5√Z = 2.[cos(0 + 6π)/5 + i.sen(0 + 6π)/5 ==> 5√Z = 2.[cos(6π/5)+ i.sen(6π/5)]
Para K = 4 ==> 5√Z = 5√32 [ cos(0 + 2.4.π)/5+ i.sen(0 + 2.4.π)/5] ==> 5√Z = 2.[cos(0 + 8π)/5 + i.sen(0 + 8π)/5 ==> 5√Z = 2.[cos(8π/5)+ i.sen(8π/5)]
Espero ter ajudado!!!