Resolvendo sistemas de maneira muito prática!

Usando matrizes inversas

Matemática Álgebra Linear
Resolvendo sistemas de maneira muito prática!
Adriel M.
em 10 de Abril de 2020

Olá galera, tudo bem?

 

Vocês conhecem aqueles sistemas matemáticos entediantes, os quais você precisa gastar um tempão para resolvê-los? E se eu dissese para vocês que há uma maneira rápida e eficaz de solucioná-los? Vamos trabalhar com um exemplo e o seu passo a passo para você aprender como funciona e conseguir resolver qualquer sistema de hoje em diante.

 

Exemplo: Resolva o sistema descrito.

\begin{cases} 7x+5y=-4 \\ -6x+3y=-33 \end{cases}

 

Bom, existe uma fórmula (1) muito simples dentro da álgebra linear que pode ser usada para a resolução de qualquer sistema, vejamos:

\vec{x}=A^{-1}\vec{b}

 

Mas, o que essa fórmula quer nos dizer? Ela nos diz que o vetor x, neste caso os valores de x e y, podem ser encontrados ao multiplicarmos a matriz inversa do sistema pelo vetor b, que neste caso é os valores -4 e -33. Vamos ver o passo a passo. Primeiro, precisamos encontrar o determinante ({\left | A \right |})de A:

{\left | A \right |} = \left( \begin{array}{cc} 7 & 5 \\ -6 & 3 \end{array} \right)

 

Fazemos isso, multiplicando 7 por 3 e subtraímos o resultado pelo multiplicação de 5 por -6, assim:

{\left | A \right |} = 7.3-5(-6)=41 ( O resultado aqui é 51 e não 41)

 

Agora precisamos encontrar a matriz inversa de A, usando a seguinte expressão (2):

A^{-1}=\frac{1}{\left | A \right |} \left( \begin{array}{cc} d & -b \\ -c & a \end{array} \right)

 

Sabemos que o valor de a=7, b=5, c=-6 e d=3 e que {\left | A \right |} é o determinante de A, assim:

A^{-1} = \frac{1}{41} \left( \begin{array}{cc} 3 & -5 \\ 6 & 7 \end{array} \right) = \left( \begin{array}{cc} \frac{1}{17} & \frac{-5}{51} \\ \frac{2}{17} & \frac{7}{51} \end{array} \right)(A divisão é por 51 e não por 41)

 

Agora, só precisamos jogar essas informações na nossa fórmula (1), multuplicar as duas matrizes e acharemos o valor de x e y:

\vec{x} = \left( \begin{array}{cc} \frac{1}{17} & \frac{-5}{51} \\ \frac{2}{17} & \frac{7}{51} \end{array} \right) \left( \begin{array}{cc} -4 \\ -33 \end{array} \right) = \left( \begin{array}{cc} 3 \\ -5 \end{array} \right)

 

Logo,

x=3 e y=-5.

 

Parece um pouco trabalhoso no começo, mas na realidade, é uma maneira muito rápida e sem erros de encontrar qualquer sistema. Se tivéssemos um sistema com variáveis x, y e z, o processo seria o mesmo, mas ao invés de uma matriz 2x2, teríamos uma matriz 3x3.

 

Espero que tenham gostado! Até uma próxima.

 

 

 

 

Curitiba / PR
Mestrado: Física Nuclear (UTFPR)
Matemática - Pré-cálculo Álgebra Linear Matemática para Ensino Fundamental Álgebra Reforço Escolar de Matemática Matemática para Enem Matemática - Cálculo
Professor de línguas e exatas. Aprenda de forma rápida, prática e sem mistérios!
Oferece aulas online (sala profes)
R$ 40 / aula
Conversar Whatsapp do professor Adriel M. Whatsapp do professor Adriel M. Ver WhatsApp
1ª aula demonstrativa
Responde em 18 min
Cadastre-se ou faça o login para comentar nessa publicação.
Luiz G.
em 17 de Abril de 2020

Dá uma revisada no resultado do determinante.

Cadastre-se ou faça o login para comentar nessa publicação.
Adriel M.
em 17 de Abril de 2020

Troquei o 4 pelo 5 na hora de passar para o computador, obrigado pela observação!

Cadastre-se ou faça o login para comentar nessa publicação.
Luis B.
em 10 de Abril de 2020

Artigo muito bom! Vou usar esse método de agora em diante : )

Cadastre-se ou faça o login para comentar nessa publicação.

Listas de exercícios, Documentos, Revisões de textos, Trabalhos?

Se seu problema for dificuldade em uma lista de exercícios, revisão de teses e dissertações, correção de textos ou outros trabalhos, peça uma ajuda pelo Tarefas Profes.

Enviar Tarefa

Confira artigos similares

Confira mais artigos sobre educação

Ver todos os artigos

Encontre um professor particular

Busque, encontre e converse gratuitamente com professores particulares de todo o Brasil