Resumo de Análise combinatória
Foto de Carlos L.
Por: Carlos L.
08 de Janeiro de 2017

Resumo de Análise combinatória

Matemática Análise Real Probabilidade Geral Análise Combinatória Conjuntos Teoria dos Números Geometria Operações Geral Ensino Médio

Na linha de frente com a probabilidade, a análise combinatória amedronta muitos alunos. Principalmente, pelo caráter hipotético dessas áreas da matemática.

Calma! Nem tudo está perdido. Com esse prático resumo e fazendo muitos exercícios, você se tornará o craque da análise combinatória. E, certamente, se dará muito bem nos seus exames ou em qualquer outro momento de sua vida que precise usar das combinações.

A análise combinatória oferece métodos e procedimentos que possibilitam representar a quantidade de agrupamentos possíveis, de acordo com critérios estabelecidos, em uma aglomeração de itens. Para iniciar nossos estudos, vamos começar entendendo o conceito de fatorial.

Antes uma ressalva importante, falaremos agora sobre alguns conceitos fundamentais. A princípio tudo pode parecer muito confuso, caso você ainda não tenha muito conhecimento sobre o tópico. No entanto, ao final do resumo realizaremos alguns exercícios bem abrangentes que lhe esclareceram facilmente suas dúvidas.

Fatorial:

Sendo n, um número natural maior que dois, chamamos de n fatorial ou fatorial de n o produto de todos os números partindo do n até 1.

Por exemplo:

2! = 2 x 1 = 2

3! = 3 x 2 x 1 = 6

4! = 4 x 3 x 2 x 1 = 24

5! = 5 x 4 x 3 x 2 x 1 = 120

n! = n x (n - 1) x (n – 2) x (n – 3) x (n – 4) .... 3 x 2 x 1

Quanto maior o valor de n, mais dificultoso o cálculo. Por isso, pode-se simplificar usando algumas estratégias, como n( n – 1)!

Exemplo:

6! = 6 x (6 – 1)! = 6 x 5! = 6 x 120 = 720

7! = 7 x (7 – 1)! = 7 x 6! = 7 x 720 = 5040

Vale lembrar que 0! = 1 e 1! = 1.

 

 

Princípios fundamentais da contagem

Em k conjuntos probabilísticos, com Nielementos, finitos, independentes e continuados, o número provável para escolher um elemento de cada grupo é dado pela multiplicação.

n1 x n2 x n3 x n4 x ... x nk

Arranjo simples

Considerando a ordem e a localização dos elementos como princípio, o arranjo simples é o grupo de p itens retirado do conjunto n de acordo com alguma situação. Para calcular, podemos utilizar de duas maneiras:

1ª) An,p = n x (n – 1) x (n – 2)x ... x (n – p + 1)

 

2ª) An,p =      n!___   

                   ( n – p)! 

 

Permutação

Redistribuição de elementos em um agrupamento.

  • Permutação simples: Agrupamento dos itens de um conjunto que se diferenciaram apenas pela ordem.

                                Pn = n!

  • Permutação com repetição: nesse caso, a reorganização acontecerá, contudo, as repetições serão excluídas. Por exemplo, um conjunto de X elementos de n com r1, r2, r3, ..., rk repetições podemos calcular da seguinte maneira:

 

                 r1, r2, r3, ..., rk

             P  =                  n!_______          

               n            r1, r2, r3, ..., rk

 

Combinação simples

A combinação simples é o agrupamento de n itens de um conjunto p em que a ordem dos elementos não importa. O procedimento, assim, não é complexo. Basta dividir o número de arranjos pela permutação das combinações. Ou seja:

                        Cn,p =    An,p       =             n!____

                                      p!             p! x ( n – p)!

 

 

Exercício:

(UFF) uma moça vai desfilar vestindo saia, blusa, bolsa e chapéu. O organizador do desfile afirma que três modelos de saia, três de blusa, cinco de bolsa e um certo número de chapéus permitem mais de duzentas possibilidades de diferentes escolhas deste traje. Assinale a alternativa que apresenta o número mínimo de chapéus que torna verdadeira a afirmação do organizador.

a) 189

b) 30

 c) 11

d) 5

e) 4

Resolução:

Obs. adotaremos y como número de chapéus.

3 x 3 x 5 x y > 200

45 x y > 200

y > 200/45

y > 4,44...

 

Logo, a quantidade mínima de chapéus é 5, alternativa D.

 

Certamente, você encontrará alguns exercícios difíceis de análise combinatório. No entanto, fixando bem a base teoria e praticando bastante, você conseguirá resolve-los facilmente. Além disso, você também pode buscar aplicar esse conteúdo para resolver contratempos no seu cotidiano. A aprendizagem, assim, se tornará muito mais interessante.

 

 

 

 

 

Resolva exercícios e atividades acadêmicas

Resolução de exercícios, atividades acadêmicas, lição de casa, listas de exercícios, tarefas, revisão de textos e muito mais.

Professores especialistas para resolver passo a passo, dentro do seu prazo!

Tarefas Profes

Artigos similares

Tutoria com Inteligência Artificial

Conheça a Minerva IA e aprenda Matemática, tire dúvidas e resolva exercícios. Personalizado e no seu ritmo.

Tecnologia do ChatGPT. Use texto, áudio, fotos, imagens e arquivos.

Minerva IA