Duvida uv luz solar 2

Física

Como o UV da luz solar se comporta ao colidir com material da caixa de sapato? é refletiva para todo o interior da caixa ou absorvida? se ela entra pela caixa atraves dessas setas de baixo para cima entre a tampa e o corpo da caixa ele é refletido para todas as direções do interior da caixa ao bater na tampa?  se tiver objetos de plastico e borracha dentro da caixa vai resseca-los por UV?

foto

https://ibb.co/QjD2yCK

Foto de Junior M.
Junior perguntou há 4 anos

Sabe a resposta?

Ganhe 10 pts por resposta de qualidade
Responder dúvida
2 respostas
0
votos
Nenhum usuário votou nessa resposta como útil.
Professor Igor M.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 4 anos

Junior, grande parte do UV será absorvido pelo papelão, se quiser zerar a reflexão, pode pintar por dentro da tampa de preto, serão apenas resquícios de luz que serão refletidos, está caixa já está muito protegida, no máximo, coloque-a dentro de um saco plástico preto, mas isso já evitará o ressecamento por um tempo enorme, será muitíssima pouca luz que entrará, se quiser fazer um teste, use uma calculadora com painel solar e verá que ela descarrega se ficar muito tempo na caixa fechada.

Envie uma dúvida gratuitamente

Envie sua primeira dúvida gratuitamente aqui no Tira-dúvidas Profes. Nossos professores particulares estão aqui para te ajudar.

-1
votos
-1 usuários votaram nessa resposta como não útil.
Professora Claudia S.
Identidade verificada
  • CPF verificado
  • E-mail verificado
Respondeu há 4 anos
RADIAÇÃO SOLAR INCIDENTE Embora a atmosfera seja muito transparente à radiação solar incidente, somente em torno de 25% penetra diretamente na superfície da Terra sem nenhuma interferência da atmosfera, constituindo a insolação direta. O restante é ou refletido de volta para o espaço ou absorvido ou espalhado em volta até atingir a superfície da Terra ou retornar ao espaço (Fig. 2.10). O que determina se a radiação será absorvida, espalhada ou refletida de volta? Como veremos, isto depende em grande parte do comprimento de onda da energia que está sendo transportada, assim como do tamanho e natureza do material que intervém. a) ESPALHAMENTO Embora a radiação solar incida em linha reta, os gases e aerossóis podem causar seu espalhamento, dispersando-a em todas as direções - para cima, para baixo e para os lados. A reflexão (veja mais adiante) é um caso particular de espalhamento. A insolação difusa é constituída de radiação solar que é espalhada ou refletida de volta para a Terra. Esta insolação difusa é responsável pela claridade do céu durante o dia e pela iluminação de áreas que não recebem iluminação direta do sol. As características do espalhamento dependem, em grande parte, do tamanho das moléculas de gás ou aerossóis. O espalhamento por partículas cujo raio é bem menor que o comprimento de onda da radiação espalhada, como o caso do espalhamento da luz visível por moléculas de gás da atmosfera, é dependente do comprimento de onda (espalhamento Rayleigh), de forma que a irradiância monocromática espalhada é inversamente proporcional à 4ª potência do comprimento de onda (). Esta dependência é a base para explicar o azul do céu. Conforme mencionado anteriormente, grande parte da energia da radiação solar está contida no intervalo visível, entre o vermelho e o violeta. A luz azul () tem comprimento de onda menor que a luz vermelha (). Conseqüentemente, a luz azul é aproximadamente 5,5 vezes mais espalhada que a luz vermelha. Além disso ela é mais espalhada que o verde, amarelo e laranja. Assim, o céu, longe do disco do sol, parece azul. Como a luz violeta () tem um comprimento de onda menor que a azul, por que o céu não parece violeta? Porque a energia da radiação solar contida no violeta é muito menor que a contida no azul e porque o olho humano é mais sensível à luz azul que à luz violeta. Como a densidade molecular decresce drasticamente com a altura, o céu, visto de alturas cada vez maiores, iria gradualmente escurecer até tornar-se totalmente escuro, longe do disco solar. Por outro lado, o Sol apareceria cada vez mais branco e brilhante. Quando o Sol se aproxima do horizonte (no nascer e por do Sol) a radiação solar percorre um caminho mais longo através das moléculas de ar, e portanto mais e mais luz azul e com menor comprimento de onda é espalhada para fora do feixe de luz, e portanto a radiação solar contém mais luz do extremo vermelho do espectro visível. Isto explica a coloração avermelhada do céu ao nascer e por do Sol. Este fenômeno é especialmente visível em dias nos quais pequenas partículas de poeira ou fumaça estiverem presentes. Quando a radiação é espalhada por partículas cujos raios se aproximam ou excedem em aproximadamente até 8 vezes o comprimento de onda da radiação, o espalhamento não depende do comprimento de onda (espalhamento Mie). A radiação é espalhada igualmente em todos os comprimentos de onda. Partículas que compõem as nuvens (pequenos cristais de gelo ou gotículas de água) e a maior parte dos aerossóis atmosféricos espalham a luz do Sol desta maneira. Por isso, as nuvens parecem brancas e quando a atmosfera contém grande concentração de aerossóis o céu inteiro aparece esbranquiçado. Quando o raio das partículas é maior que aproximadamente 8 vezes o comprimento de onda da radiação, a distribuição angular da radiação espalhada pode ser descrita pelos princípios da ótica geométrica. O espalhamento de luz visível por gotas de nuvens, gotas de chuva e partículas de gelo pertence a este regime e produz uma variedade de fenômenos óticos como arco íris, auréolas, etc... Fig. 2.10 - Distribuição percentual da radiação solar incidente b) REFLEXÃO Aproximadamente 30% da energia solar é refletida de volta para o espaço (Fig. 2.10). Neste número está incluída a quantidade que é retroespalhada. A reflexão ocorre na interface entre dois meios diferentes, quando parte da radiação que atinge esta interface é enviada de volta. Nesta interface o ângulo de incidência é igual ao ângulo de reflexão (lei da reflexão). Conforme já mencionamos, a fração da radiação incidente que é refletida por uma superfície é o seu albedo. Portanto, o albedo da Terra como um todo (albedo planetário) é 30%. O albedo varia no espaço e no tempo, dependendo da natureza da superfície (ver Tab. 2.1) e da altura do Sol. Dentro da atmosfera, os topos das nuvens são os mais importantes refletores. O albedo dos topos de nuvens depende de sua espessura, variando de menos de 40% para nuvens finas (menos de 50m) a 80% para nuvens espessas (mais de 5000m). c) ABSORÇÃO NA ATMOSFERA O espalhamento e a reflexão simplesmente mudam a direção da radiação. Contudo, através da absorção, a radiação é convertida em calor. Quando uma molécula de gás absorve radiação esta energia é transformada em movimento molecular interno, detectável como aumento de temperatura. Portanto, são os gases que são bons absorvedores da radiação disponível que tem papel preponderante no aquecimento da atmosfera. A Fig. 2.11 fornece a absortividade dos principais gases atmosféricos em vários comprimentos de onda. O Nitrogênio, o mais abundante constituinte da atmosfera (ver Tab. 1.1) é um fraco absorvedor da radiação solar incidente, que se concentra principalmente nos comprimentos de onda entre 0,2 e 2. A fotodissociação do oxigênio (entre 50 a 110 km de altitude) (2.15) absorve virtualmente toda radiação solar ultravioleta para . O oxigênio atômico assim obtido é altamente reativo, sendo de particular importância a reação (2.16) que é o mecanismo dominante para a produção de ozônio na atmosfera (M é uma 3ª molécula necessária para retirar o excesso de energia liberada na reação). Como a probabilidade de ocorrência desta reação cresce com o quadrado da densidade do gás, o oxigênio atômico é estável na alta mesosfera e termosfera, enquanto na estratosfera ele se combina rapidamente para formar o ozônio. A radiação ultravioleta para é absorvida na reação de fotodissociação do ozônio (na estratosfera, entre 20 a 60 km) (2.17) O átomo de oxigênio combina rapidamente com para formar outra molécula de , pela (2.16). Quando (2.17) e (2.16) ocorrem seqüencialmente não há mudança na estrutura química, mas somente absorção de radiação e resultante entrada de calor e aumento de temperatura na estratosfera. O único outro absorvedor significativo da radiação solar incidente é o vapor d'água que, com o oxigênio e o ozônio, respondem pela maior parte dos 19% da radiação solar que são absorvidos na atmosfera. Da Fig. 2.11 vemos que na atmosfera como um todo, nenhum gás absorve efetivamente radiação entre 0,3 e 0,7 ; portanto, existe uma larga "janela". Esta região do espectro corresponde ao intervalo visível ao qual pertence uma grande fração da radiação solar. Pode-se dizer que a atmosfera é bastante transparente à radiação solar incidente pois absorve apenas 19% de sua energia e que, portanto, esta não é um aquecedor eficiente da atmosfera. A maior parte da absorção da radiação solar em comprimentos de onda do intervalo infravermelho deve-se ao vapor d'água e ocorre na troposfera, onde a maior parte do vapor d'água está localizado. Esta parte da absorção apresenta grande variabilidade devido à distribuição do vapor d'água.

Professores particulares de Física

+ Ver todos
Encontre professor particular para te ajudar nos estudos
R$ 70 / h
Claudia S.
Ribeirão Preto / SP
Claudia S.
5,0 (2 avaliações)
Horas de aulas particulares ministradas 2 horas de aula
Identidade verificada
  • CPF verificado
  • E-mail verificado
1ª hora grátis
Física Básica Cinemática Física - Mecânica
Mestrado: EDUCAÇÃO PARA A CIÊNCIA (Funiber - Fundação Iberoamericana)
"Professora de Matemática ( Cálculo Diferencial I,II,III e IV, Fundamentos da Matemática, Geometria e e Álgebra I Probabilidade ) Física Geral" e,
R$ 70 / h
Marcos T.
Iguaba Grande / RJ
Marcos T.
5,0 (84 avaliações)
Horas de aulas particulares ministradas 855 horas de aula
Identidade verificada
  • CPF verificado
  • E-mail verificado
Física - ensino fiundamental Mecânica Geral do Corpo rígido Física para o 2° ano
Graduação: Engenharia Civil (UNIESP)
Mais de 2000 horas de aulas on-line ministradas. Inúmeras aprovações em concursos militares e vestibulares. Meu objetivo é seu entendimento.
R$ 55 / h
Marcos F.
Rio de Janeiro / RJ
Marcos F.
4,9 (1.327 avaliações)
Horas de aulas particulares ministradas 1.677 horas de aula
Tarefas resolvidas 1.574 tarefas resolvidas
Identidade verificada
  • CPF verificado
  • E-mail verificado
1ª hora grátis
Física - Graduação Física para ENEM Física para Concursos
Graduação: Intercâmbio Internacional e Graduação Sanduíche (Miami University)
Professor de matemática, física e química com 10 anos de experiência! Vem aprender comigo!
Envie uma tarefa, lista de exercícios, atividade ou projeto
  • Você define o prazo
  • Professores fazem propostas e você escolhe o melhor
  • Interação com o professor por chat
  • Se não gostar da resolução, reembolsamos
Enviar Tarefa

Envie uma dúvida gratuitamente

Envie sua primeira dúvida gratuitamente aqui no Tira-dúvidas Profes. Nossos professores particulares estão aqui para te ajudar.

Encontre um professor e combine aulas particulares Presenciais ou Online